

One general guideline for good O-ring application and design is to maintain a range of % sqeeze on the O-ring (~10-40% for static and no more than 30% for dynamic).

No less than 75% of the seal cross-section should be contained within the groove to ensure the seal does not "roll" or extrude out of the groove. See Section 5 for more detail on determining the allowable clearance gap.

Finally, be sure to consider the void/volume relationship in worse case tolerance conditions. The maximum O-ring volume should not exceed 90% of the minimum gland void. The groove width may be increased to provide additional void.

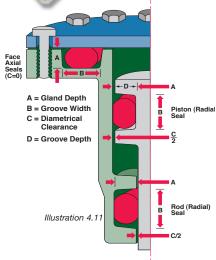


Table A

O-Ring Gland Design For Dynamic Seals

Note: Table A contains general sealing guidelines. More specific information is available throughout this guide.

		Squeeze			Groo	ve Width. ±			
O-Ring Cross Section	Gland Depth	Inches	%	Diametrical Clearance Max.	No Backup Rings	One Backup Ring	Two Backup Rings	Groove Radius	Eccen- tricity Max.
.040	.031/.033	.004/.012	11-28	.004	.063	_	_	.005008	.002
.050	.039/.041	.006/.014	13-26	.004	.073	_	_	.005008	.002
.060	.047/.049	.008/.016	14-25	.004	.084	-	-	.005008	.002
.070	.055/.057	.010/.018	15-25	.004	.095	.150	.208	.005015	.002
.103	.087/.090	.010/.019	10-18	.005	.145	.187	.249	.005020	.003
.139	.119/.123	.012/.024	9-17	.006	.185	.222	.301	.005030	.004
.210	.183/.188	.017/.032	8.5-15	.006	.285	.338	.428	.005050	.006
.275	.234/.240	.029/.047	10.5-17	.007	.375	.440	.579	.005060	.008

O-Ring Gland Design For Static Seals

	01 15 11		Squeeze					Groove Width. ±.005				
O-Ring Cross Section Radial		Axial	Radial Inches	→ ○←	Axial (%	Dia- metrical Clearance Max.	No Backup Rings	One Backup Ring	Two Backup Rings		Eccen- tricity Max
†.020	.013014	.013014	.004009	22-41	.004009	22-41	.002	.035	_	-	_	.0015
.030	.020022	.020022	.005013	19-39	.005013	19-39	.003	.045	_	_	_	.0015
.040	.027030	.027030	.007016	19-37	.007016	19-37	.003	.060	_	_	.005008	.002
.050	.035039	.034038	.008018	17-34	.009019	19-36	.004	.075	-	-	.005008	.002
.060	.042047	.042046	.010021	18-33	.011021	19-33	.004	.090	_	_	.005008	.002
.070	.050055	.049054	.012023	18-32	.013024	19-33	.004	.105	.150	.208	.005015	.002
.103	.080086	.075081	.014026	14-25	.019031	19-29	.005	.146	.182	.244	.005020	.003
.139	.110116	.100108	.019033	14-23	.027043	20-30	.006	.195	.217	.296	.005030	.004
.210	.170176	.155165	.029045	14-21	.040060	20-28	.006	.280	.333	.423	.005050	.006
.275	.225235	.205215	.034056	13-20	.054076	20-27	.007	.350	.435	.574	.005060	.008

†Note: It is recommended that an O-ring with tighter CS tolerance (\pm .002) be requested.